当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Probing Hybrid LiFePO4/FePO4 Phases in a Single Olive LiFePO4 Particle and Their Recovering from Degraded Electric Vehicle Batteries
Nano Letters ( IF 9.6 ) Pub Date : 2023-07-21 , DOI: 10.1021/acs.nanolett.3c01991
Wenyu Wang 1 , Rui Wang 2 , Renming Zhan 1 , Junmou Du 1, 3 , Zihe Chen 1 , Ruikang Feng 1 , Yuchen Tan 1 , Yang Hu 1 , Yangtao Ou 1 , Yifei Yuan 4 , Cheng Li 5 , Yinguo Xiao 2 , Yongming Sun 1
Nano Letters ( IF 9.6 ) Pub Date : 2023-07-21 , DOI: 10.1021/acs.nanolett.3c01991
Wenyu Wang 1 , Rui Wang 2 , Renming Zhan 1 , Junmou Du 1, 3 , Zihe Chen 1 , Ruikang Feng 1 , Yuchen Tan 1 , Yang Hu 1 , Yangtao Ou 1 , Yifei Yuan 4 , Cheng Li 5 , Yinguo Xiao 2 , Yongming Sun 1
Affiliation
![]() |
The recycling of LiFePO4 from degraded lithium-ion batteries (LIBs) from electric vehicles (EVs) has gained significant attention due to resource, environment, and cost considerations. Through neutron diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy, we revealed continuous lithium loss during battery cycling, resulting in a Li-deficient state (Li1–xFePO4) and phase separation within individual particles, where olive-shaped FePO4 nanodomains (5–10 nm) were embedded in the LiFePO4 matrix. The preservation of the olive-shaped skeleton during Li loss and phase change enabled materials recovery. By chemical compensation for the lithium loss, we successfully restored the hybrid LiFePO4/FePO4 structure to pure LiFePO4, eliminating nanograin boundaries. The regenerated LiFePO4 (R-LiFePO4) exhibited a high crystallinity similar to the fresh counterpart. This study highlights the importance of topotactic chemical reactions in structural repair and offers insights into the potential of targeted Li compensation for energy-efficient recycling of battery electrode materials with polyanion-type skeletons.
中文翻译:
探索单个 Olive LiFePO4 颗粒中的混合 LiFePO4/FePO4 相及其从退化电动汽车电池中的恢复
出于资源、环境和成本方面的考虑,从电动汽车(EV)的退化锂离子电池(LIB)中回收LiFePO 4已受到广泛关注。通过中子衍射、X射线光电子能谱和透射电子显微镜,我们揭示了电池循环过程中连续的锂损失,导致缺锂状态(Li 1– x FePO 4)和单个颗粒内的相分离,其中橄榄形FePO 4纳米域(5-10 nm)嵌入LiFePO 4基质中。在锂损失和相变过程中橄榄形骨架的保存使得材料能够回收。通过化学补偿锂损失,我们成功地将杂化LiFePO 4 /FePO 4结构恢复为纯LiFePO 4,消除了纳米晶界。再生的LiFePO 4 (R-LiFePO 4 )表现出与新鲜对应物相似的高结晶度。这项研究强调了拓扑化学反应在结构修复中的重要性,并深入探讨了靶向锂补偿在聚阴离子型骨架电池电极材料的节能回收中的潜力。
更新日期:2023-07-21
中文翻译:

探索单个 Olive LiFePO4 颗粒中的混合 LiFePO4/FePO4 相及其从退化电动汽车电池中的恢复
出于资源、环境和成本方面的考虑,从电动汽车(EV)的退化锂离子电池(LIB)中回收LiFePO 4已受到广泛关注。通过中子衍射、X射线光电子能谱和透射电子显微镜,我们揭示了电池循环过程中连续的锂损失,导致缺锂状态(Li 1– x FePO 4)和单个颗粒内的相分离,其中橄榄形FePO 4纳米域(5-10 nm)嵌入LiFePO 4基质中。在锂损失和相变过程中橄榄形骨架的保存使得材料能够回收。通过化学补偿锂损失,我们成功地将杂化LiFePO 4 /FePO 4结构恢复为纯LiFePO 4,消除了纳米晶界。再生的LiFePO 4 (R-LiFePO 4 )表现出与新鲜对应物相似的高结晶度。这项研究强调了拓扑化学反应在结构修复中的重要性,并深入探讨了靶向锂补偿在聚阴离子型骨架电池电极材料的节能回收中的潜力。