当前位置:
X-MOL 学术
›
Laser Photonics Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Colloidal Manipulation through Plasmonic and Non-plasmonic Laser-Assisted Heating
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2023-08-27 , DOI: 10.1002/lpor.202300303
Monisha K 1 , Suresh K 1 , Sajan D. George 1, 2
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2023-08-27 , DOI: 10.1002/lpor.202300303
Monisha K 1 , Suresh K 1 , Sajan D. George 1, 2
Affiliation
In spite of the long-term awareness of the conversion of light to heat even in materials with low absorption coefficient via the photothermal effect and consequent usage of the effect to evaluate thermo-optic properties of the materials, only recently has the thermal field created via photon-to-phonon conversion been exploited for manipulation of colloidal objects as well as living cells. As compared to conventional direct photon-assisted manipulation via optical tweezers, the optothermal manipulation technique employs much lower optical source power and can manipulate particles over a long range. In this review, the working mechanisms, concepts, and applications of a series of recently established optothermal techniques are discussed for the manipulation of diverse species including micro/nanoparticles, biological cells, molecules, and micelles in various fluidic environments. The physical mechanism of the optical manipulation that relies on the coordinated action of thermal convection, Marangoni convection, thermophoresis, thermoelectricity, depletion attraction, and thermo-osmotic flow is discussed in detail. With their low-power operation, diverse functionalities, and simple optics employed, optothermal manipulation techniques are increasingly finding a wide range of applications in colloidal science, life sciences, materials science, and nanoscience, as well as in the developments of colloidal functional devices and nanomedicine.
中文翻译:
通过等离子体和非等离子体激光辅助加热进行胶体操纵
尽管人们长期以来认识到即使在吸收系数较低的材料中也可以通过光热效应将光转化为热,并随后利用该效应来评估材料的热光性能,但直到最近才通过光热效应产生热场光子到声子的转换已被用于操纵胶体物体以及活细胞。与传统的通过光镊进行的直接光子辅助操纵相比,光热操纵技术采用低得多的光源功率,并且可以在长范围内操纵粒子。在这篇综述中,讨论了一系列最近建立的光热技术的工作机制、概念和应用,用于在各种流体环境中操纵不同的物种,包括微米/纳米颗粒、生物细胞、分子和胶束。详细讨论了依赖于热对流、马兰戈尼对流、热泳、热电、耗尽吸引和热渗透流协调作用的光学操纵的物理机制。光热操控技术以其低功耗、功能多样、光学简单等特点,在胶体科学、生命科学、材料科学、纳米科学以及胶体功能器件和器件的开发中得到越来越广泛的应用。纳米医学。
更新日期:2023-08-27
中文翻译:
通过等离子体和非等离子体激光辅助加热进行胶体操纵
尽管人们长期以来认识到即使在吸收系数较低的材料中也可以通过光热效应将光转化为热,并随后利用该效应来评估材料的热光性能,但直到最近才通过光热效应产生热场光子到声子的转换已被用于操纵胶体物体以及活细胞。与传统的通过光镊进行的直接光子辅助操纵相比,光热操纵技术采用低得多的光源功率,并且可以在长范围内操纵粒子。在这篇综述中,讨论了一系列最近建立的光热技术的工作机制、概念和应用,用于在各种流体环境中操纵不同的物种,包括微米/纳米颗粒、生物细胞、分子和胶束。详细讨论了依赖于热对流、马兰戈尼对流、热泳、热电、耗尽吸引和热渗透流协调作用的光学操纵的物理机制。光热操控技术以其低功耗、功能多样、光学简单等特点,在胶体科学、生命科学、材料科学、纳米科学以及胶体功能器件和器件的开发中得到越来越广泛的应用。纳米医学。