当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel Palladium Hydride Surface Enabling Simultaneous Bacterial Killing and Osteogenic Formation through Proton Capturing and Activation of Antioxidant System in Immune Microenvironments
Advanced Materials ( IF 29.4 ) Pub Date : 2024-05-17 , DOI: 10.1002/adma.202404485
Dongdong Zhang 1 , Mei Li 2 , Shuhan Chen 3, 4 , Huihui Du 3, 4 , Hua Zhong 5 , Jun Wu 1 , Feihong Liu 1 , Qian Zhang 1, 6 , Feng Peng 2 , Xuanyong Liu 3, 4, 7 , Kelvin W.K. Yeung 1, 6
Affiliation  

Achieving bacterial killing and osteogenic formation on an implant surface rarely occurs. In this study, a novel surface design–a palladium hydride (PdHx) film that enables these two distinct features to coexist is introduced. The PdHx lattice captures protons in the extracellular microenvironment of bacteria, disrupting their normal metabolic activities, such as ATP synthesis, nutrient co-transport, and oxidative stress. This disruption leads to significant bacterial death, as evidenced by RNA sequence analysis. Additionally, the unique enzymatic activity and hydrogen-loading properties of PdHx activate the human antioxidant system, resulting in the rapid clearance of reactive oxygen species. This process reshapes the osteogenic immune microenvironment, promoting accelerated osteogenesis. These findings reveal that the downregulation of the NOD-like receptor signaling pathway is critical for activating immune cells toward M2 phenotype polarization. This novel surface design provides new strategies for modifying implant coatings to simultaneously prevent bacterial infection, reduce inflammation, and enhance tissue regeneration, making it a noteworthy contribution to the field of advanced materials.

中文翻译:


新型氢化钯表面能够通过质子捕获和免疫微环境中抗氧化系统的激活同时杀死细菌和成骨



在植入物表面实现细菌杀灭和成骨形成的情况很少发生。在这项研究中,引入了一种新颖的表面设计——氢化钯 (PdH x ) 薄膜,它使这两种不同的特征能够共存。 PdH x 晶格捕获细菌细胞外微环境中的质子,扰乱其正常代谢活动,如 ATP 合成、营养物共转运和氧化应激。 RNA 序列分析证明,这种破坏会导致细菌大量死亡。此外,PdH x 独特的酶活性和载氢特性可激活人体抗氧化系统,从而快速清除活性氧。这一过程重塑了成骨免疫微环境,促进加速成骨。这些发现表明,NOD 样受体信号通路的下调对于激活免疫细胞向 M2 表型极化至关重要。这种新颖的表面设计提供了修改植入物涂层的新策略,以同时防止细菌感染、减少炎症并增强组织再生,使其对先进材料领域做出了值得注意的贡献。
更新日期:2024-05-17
down
wechat
bug