当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advanced Structural Engineering Design for Tailored Microporous Structure via Adjustable Graphite Sheet Angle to Enhance Sodium‐Ion Storage in Anthracite‐Based Carbon Anode
Advanced Functional Materials ( IF 19.0 ) Pub Date : 2024-05-20 , DOI: 10.1002/adfm.202405174
Yanhong Zhao 1 , Zhuang Hu 1 , Wang Zhou 1, 2 , Peng Gao 1, 2 , Zhixiao Liu 1 , Jinshui Liu 1, 3 , Changling Fan 1, 2, 3 , Jilei Liu 1, 2, 3
Affiliation  

Carbon material has emerged as a highly promising anode for sodium‐ion batteries (SIBs) due to its abundance of resources, cost‐effectiveness, and high carbon yield. This work elaborately designs the precursor structure for the self‐assembly of melamine‐cyanuric acid on the anthracite surface through hydrogen bonding, and successfully constructs N‐doped carbon with tailored microstructure and expanded interlayer spacing. Serving as anode for SIBs, the optimized sample delivers high specific capacity (371.3 mAh g−1 at 0.05 A g−1), superior rate capability (295.8 mAh g−1 at 10.0 A g−1), and excellent ultra‐long cycling performance (the retention of 91.5% after 3000 cycles at 0.5 A g−1). The systematic investigations reveal the enhancement of sodium‐ion storage in the low‐voltage plateau region involving the interlayer intercalation coupled with nanopores filling. It is discovered that the microporous structure formed by the appropriate graphite sheet angle influences the migration and storage of sodium ions. Density functional theory calculations indicate that the adsorption capacity for sodium ion is enhanced and the migration energy barrier perpendicular to the graphite layer is reduced at the appropriate angle of 8°. This study provides novel insights into the sodium‐ion storage mechanism, offering guidance for the better design of anthracite‐based carbon anode with superior performance.

中文翻译:


通过可调节石墨片角度定制微孔结构的先进结构工程设计,以增强无烟煤基碳阳极中的钠离子存储



由于资源丰富、成本效益高和碳产率高,碳材料已成为钠离子电池(SIB)极有前途的阳极。该工作精心设计了三聚氰胺-氰尿酸通过氢键在无烟煤表面自组装的前体结构,并成功构建了具有定制微观结构和扩大层间距的氮掺杂碳。作为SIB的负极,优化的样品具有高比容量(0.05 A g−1 时为371.3 mAh g−1)、优异的倍率性能(10.0 A g−1 时为295.8 mAh g−1)和出色的超长循环性能性能(0.5 A g−1 循环 3000 次后保留率为 91.5%)。系统研究揭示了低压高原区域钠离子储存的增强涉及层间插层和纳米孔填充。研究发现,适当的石墨片角度形成的微孔结构影响钠离子的迁移和储存。密度泛函理论计算表明,在8°合适的角度下,钠离子的吸附能力增强,垂直于石墨层的迁移能垒降低。这项研究为钠离子存储机制提供了新的见解,为更好地设计具有优越性能的无烟煤基碳阳极提供了指导。
更新日期:2024-05-20
down
wechat
bug